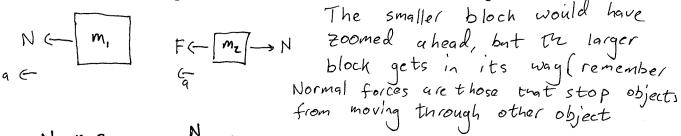
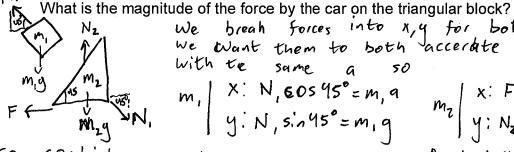
Discussion 5b: Newton's Laws of Motion and Forces


Name: Fun E. Guy

Goal: To be able to apply Newton's laws of motion and to understand forces and rotation with forces.

A) A car is applying a leftward horizontal force of 60 N to a block that has a mass of 2.0 kg. To the left of the small block is a larger block of mass 4.0 kg. The two blocks move together. Gravity acts along the vertical at 10 m/s² and

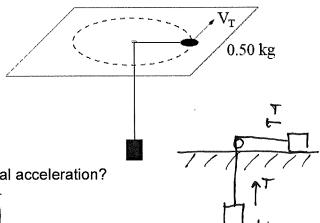
there is no friction between the blocks or between the floor and the blocks. What is the force magnitude and direction of the left block on the right block?



N=m, a =
$$\frac{N}{m}$$
, so
F=N+m₂a=N+ $\frac{m_2}{m}$, N=N(1+ $\frac{m_2}{m}$) so N= $\frac{F}{1+\frac{m_2}{m_1}}$ = $\frac{60}{1+\frac{7}{4}}$ = $\frac{60}{3/2}$ = 40N

B) A car is applying an unknown leftward horizontal force to a triangular block that has a mass of 2.0 kg. To the left of this block is a 2nd block of mass 4.0 kg. The 1st block has the shape of a right triangle with two 45° angles.

These two blocks move together (i.e., the 2nd block does not move relative to the 1st block). Gravity acts along the vertical at 10 m/s² and there is no friction between the blocks or between the floor and the blocks.



We break forces into x, y for both blocks, but we want them to both accerdite in the -x direction with the same a so

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

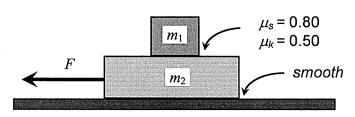
Name:	
-------	--

C) In the figure is an assembly consisting of two small masses connected by a massless inflexible string passing through a small hole in a horizontal frictionless table. The string is 1.00 m long. The hanging mass is stationary while the other mass, 0.50 kg, is undergoing uniform circular motion at a speed of 2.0 m/s and a distance 0.10 meters away from the hole. Gravity acts along the vertical and assume that little g is 10 m/s²

1. What is the magnitude of the centripetal acceleration?

$$q_c = \frac{v^2}{r} = \frac{z^2}{0.1} = 40 m/s^2$$

2. What is the magnitude of the centripetal force F_c?


3. How does the tension in the string T compare to F_c (which is larger or are they equal)? Explain your reasoning.

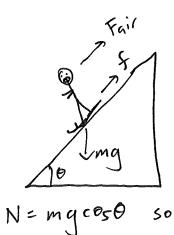
The string is massless and inflexible so the tension is the same throughout the string (Think tension as equal + opposite florce through the whole thing) so
$$T = F$$
 since the hanging mass doesn't move ($ZF = 0$)

4. What is the mass of the hanging mass?

Name:		

D) A box of mass $m_1 = 1.0$ kg is atop a 2nd box of mass $m_2 = 2.0$ kg. Both are initially at rest. The bottom block is being pulled horizontally to the left with a force F. There is a friction between the two masses (with $\mu_s = 0.80 \& \mu_k = 0.50$) but none elsewhere. Let g =10 m/s²

1. At what minimum F will the top box just begin to slip?


$$8mm, a$$

 $F = 8 = m_2 a = F = (m_1 + m_2)a$ but $a = \frac{8}{m_1} = 8m_5^2$ so
 $F = 3.8 = 24N$

2. What will be the resulting acceleration of the bottom block using F of question 1 above (i.e., when the top block slips)?

Let
$$\mathcal{C}$$
 block slip, or $f_s \rightarrow f_k$ $a \stackrel{q_1}{\searrow} g_2$ so

$$F - f_{K} = m_{Z} q_{Z} = q_{z} = \frac{F - \mu_{K} m_{z} q_{z}}{m_{z}} = \frac{24 - 0.5 \cdot 1 \cdot 10}{2} = \frac{19}{2} = \frac{9.5 \eta_{S}^{2}}{2}$$

E) (OPTIONAL) A skier, up on a high mountain, is skiing directly down a uniform 30° slope with a coefficient of sliding (kinetic) friction μ_k =0.10. Their crosssectional area is 1.0 m², the density of air at this altitude is 1.0 kg/m³ and the skier's coefficient of drag is 0.50. An observer, at rest on the hill, observes a constant 8.8 m/s breeze which is blowing directly up the slope. Under these conditions what will be the terminal speed of the skier?

90-0

so in plane

 $mgsin\theta - Fair - M_hN = mq$ $mg(sin\theta - \mu cos\theta) - \frac{1}{2}pC_vAv^2 = ma$

For terminal velocity, a=0 (velocity constant!) So $V^2 = 2 mg (sin\theta - M_K cos\theta)$ Q = Q cv A

 $= \frac{2.50 \cdot 10 \left(\sin 30^{\circ} - 0.1 \cos 30^{\circ} \right)}{1.0.5 \cdot 1}$

= 826.8(m/s) => V=28.8 m/s

But, the wind is blowing at the shier, so the wind seems 8.8 m/s fast then in still air so the shier has an actual terminal velocity of Vterm = V-8.8 = [20 m/s]